
📦
Notes: OOP basics
Classes allow us to group out data and functions in a way its is easier to reuse. Attributes -
Data associated with a certain class. Class methods - methods associated with a certain
class.

More on GitHub:
https://github.com/chabrovs/py/tree/main/RoadMap/OOP/PythonOOPNotes

Theoretical Part:
Classes and Instances

This chapter introduces into Classes and Instances outlining the difference between
them and usage.

Base class object and metaclass type .

Intro:
The <class 'type'> metaclass and the <class 'object'> are the foundation of Python’s class
system.

The <class 'type'> :
The <class 'type'> is the special metaclass hardcoded in C that serves the purpose of the
default metaclass for all Classes.

Methods <class 'type'> gives to subclasses:

These method allow to work with Classes as object.

Notes: OOP basics 1

https://github.com/chabrovs/py/tree/main/RoadMap/OOP/PythonOOPNotes

1. __call__ — lets call a class to make an object.

2. __bases__ (attribute) — a tuple of parent classes.

3. __dict__ (attribute) — holds class’s namespace keys.

4. __mro__ (attribute) — a tuple of method resolution order.

5. __subclasses__ (attribute) — a list of classes that inherit from it.

The <class 'object> :
The <class 'object'> is the base class of all Classes in Python. As it comes from, every
Class in Python, whether it is a built-in Class like <class ‘str’> , <class ‘int’> or one
customarily created by the Programmer, uses the <class 'object'> as its parent. This gives
every object (instance) base methods to work with (i.e., str.__bases__ .

Methods <class 'object'> gives to subclasses:

These methods allows to work with classes instances.

1. __init__ — set up object.

2. __str__ — show object as a string.

3. __repr__ — gives a detailed string for developers.

4. __eq__ — allows to compare objects.

5. __hash__ — helps with hashing, to make instances hashable.

Demystify confusion:
Everything in Python is an object.

An object is an instance of a class.

A class is an object itself too.

A class as an object is created using the hardcoded in C <class: 'type'> , which servers
as the default metaclass.

A class as an object inherits from the object as it is the base class.

The object implements special methods like __init__ , and so on.

Demystifying the loop:
The “type” creates “object,” and “object” is the parent of “type.” It’s a loop.

A Class

Intro:
A class is a programming language syntax construct that serves as a blueprint
(instruction) for creating (instantiating) objects (instances of a class). Based on a
single class it’s possible to create multiple instances with the same or different data.

Notes: OOP basics 2

In programming, classes allow to model real-world entities, as well as to build
relationships between them utilizing techniques such as association, inheritance, and
composition.

The conceptual idea behind classes is to encapsulate data (which is represented as
attributes) and behavior (which is represented by methods) logically related to each
other into a single object.

Methods and Attributes:
Attributes:

__name__ — The name of the class.

__module__ — The name of the module in which class is defined.

__class__ — This is the reference to the class’s metaclass, which is type by default.

__doc__ — The class’s docstring.

__bases__ — A tuple containing the base classes form which the class inherits.

__dict__ — A dictionary containing class’s namespace, including it’s attributes and
methods.

__mro__ — The Method Resolution Order (MRO), a tuple listing the order in which
Python will search for a method.

__subclasses__ — A list of classes that directly inherit from the class.

Methods:

__init_subclass__(cls) — A hook that is called whenever the class is a subclass of another
class.

__new__(cls, *args, **kwargs) — A static method that is called before __init__ to create and
return the new instance. It’s often used for metaclass programming.

__call__(self, *args, **kwargs) — When a class is called to create an instance (e.g.,
MyClass()), this method is executed. It, in tern, calls __new__ and then __init__ .

__dir__(self) — Returns a list of class’s attributes and methods for tab-completion and
other introspective tools.

Example:

main.py

class Person:
 def __init__(self, first_name: str, last_name: str, age: int):
 self.first_name = first_name
 self.last_nage = last_name
 self.age = age

Notes: OOP basics 3

Types Of Classes:
1. Abstract Base Class:

it’s a blueprint that cannot be instantiated on its own.

Designed to be a base class for concrete classes, providing a common
interface and possibly some shared functionality.

Python uses the abc.ABC object to define abstract base class.

2. Concrete Class:

It’s a complete and fully implemented class that can be used to instantiate
objects.

All its attributes and methods are fully defined and it does not require any
further implementation.

3. Data Class:

It’s a class designed to hold data rather than functionality.

It’s defined by Python’s decorator @dataclass .

An Instance

Intro:
An object is in-memory entity that combines data (state) and behavior (methods). It’s a
concrete instance of a class created during program execution or compilation.

Example:
An object instantiation based on the class:

main.py

class Person:
 def __init__(self, first_name: str, last_name: str, age: int):
 self.first_name = first_name
 self.last_nage = last_name
 self.age = age

if __name__ == "__main__":
 person_1 = Person("Sergei", "Chabrov", 16)

Data Classes

Intro:
A data class is a special type of a class primary purpose of which is to store data. To
declare a data class Python uses the built-in @dataclass decorator.

Notes: OOP basics 4

How it works:
Whenever the @dataclass decorator is used, Python automatically generates several
standard special methods:

1. __init__ — A constructor that accepts arguments for each defined field, initializing
the instance attributes.

2. __repr__ — A method that provides a useful, human-readable string representation of
the object, showing the class name and values of all its fields.

3. __eq__ — A method that allows instances to be compared for equality (==),
checking all it field values are identical.

4. __hash__ — Automatically generates if the class is designed to be immutable (via
frozen=True argument), allowing instances to be used as keys in dictionaries or

elements in sets.

Use cases:
To store data object.

The @dataclass decorator parameters:
slots: bool — tells Python not to create __dict__ for instances of the class, but to use
__slots__ that stores instance’s attributes directly in the object’s memory.

Use: when you do not need to add new attributes to the data class after
instantiation. When you want to be more memory efficient. Also, read time a bit
faster.

init: bool — generates the __init__ method.

Use: set to False if you want to define your own custom __init__ method, for
example, to perform complex validation or handle arguments differently.

repr: bool — generates the __repr__ method.

Use: set to False if you want to provide custom string representation.

eq: bool — generated the __eq__ method automatically.

Use: set to False if you have a custom logic for comparing instances, or if
objects are unique and should never be considered equal based on field values.

order: bool — if set to True , it generates comparison methods such as __lt__ , __gt__ ,
__le__ , __ge__ .

Use: when you want to compare instances based on the order of their fields.
For example, a Point class could be ordered by x and then y . Comparison is
done lexicographically based on the order of fields in the class definition.

freeze: bool — When set to True instances of the data class become immutable. This
is useful for creating hashable objects (as __hash__ generated for frozen data
classes).

Notes: OOP basics 5

Use: If you need to use the data class instances as keys in a dictionary or
elements of a sets.

unsafe_hash: bool — controls the generation of the __hash__ method. If eq=True and
frozen=False , the __hash__ method is not generated, making the data class unhashable.

Setting unsafe_hash=True forces a __hash__ method to be generated.

Use: You would use unsafe_hash=True to make a mutable data class hashable. This
is considered unsafe because the hash value of a mutable object can change,
which can lead to bugs, as dictionaries and sets rely on a consistent hash
value.

Examples:

main.py

from dataclasses import dataclass

@dataclass
class Point3D:
 x: int
 y: int
 z: int

if __name__ == "__main__":
 point1 = Point3D(1, 2, 3)
 print(point1) # STDOUT: Point3D(x=1, y=2, z=3)

Abstract Base Classes

Intro:
An Abstract Base Class (ABC) is a class that cannot be instantiated on its own but
serves as a blueprint for other classes. ABCs can include both fully implemented
methods and abstract methods (methods that have no implementation and must be
defined in a subclass). In Python, ABCs are part of the abc module.

Key Idea: ABCs are used when you want to enforce certain methods or properties in
subclasses but also provide some shared functionality.

Example:

main.py

from abc import ABC, abstractmethod

Notes: OOP basics 6

class Animal(ABC):
 @abstractmethod
 def make_sound(self):
 pass

 def sleep(self):
 print("Sleeping...")

class Dog(Animal):
 def make_sound(self):
 print("Bark!")

class Cat(Animal):
 def make_sound(self):
 print("Meow!")

if __name__ == "__main__":
 # Animal cannot be instantiated
 animal = Animal() # STDERR: TypeError

 dog = Dog()
 dog.make_sound() # STDOUT: Bark!
 dog.sleep() # STDOUT: Sleeping...

 cat = Cat()
 cat.make_sound() # STDOUT: Meow!

Explanation:

In the example above, the Animal is an abstract class, it defines the abstract method
make_sound , which must be implemented by every subclass. It also provides a concrete

method sleep , which is available to all subclasses. This approach allows to define a
common structure while enforcing a contract for the subclasses to follow.

Attributes: Instance, Class, Static
This chapter outlines clear distinguishment between Instance, Class, and Static
attributes within a class.

Instance attributes:

Intro:
Instance attributes are unique to each object (instance) created from a class. They are
defined inside a class’s methods, most commonly in the __init__ method, using the self

Notes: OOP basics 7

keyword which refers to the particular instance of a class.

Each time a new object is instantiated, it gets its own copy of the instance attributes,
and changing the value of an attribute on one instance does not affect the others.

Instance attributes are stored in the instance’s __dict__ .

Declaration: Typically in the constructor (__init__ method) using self.attribute_name = value .

Scope: Local to the specific object instance.

Access: Accessed via an instance of the class (e.g., my_object.attribute_name).

Use case:
Store data (state) that is unique to each object.

Example:

main.py

class Employee:
 def __init__(self, name: str):
 self.name = name

if __name__ == "__main__":
 employee1 = "Sergei"
 employee2 = "Alex"

 print(employee1.name) # STDOUT: Sergei
 print(employee2.name) # STDOUT: Alex

Class attributes:

Intro:
Class attributes are shared by all instances of a class. They are defined directly in the
class body namespace, outside of any methods. They are a part of the class itself and
not tied to any specific instance. Changes to a class attribute will affect all instances
that do not have their own instance attribute with the same name.

They are stored in the class’s __dict__ .

Declaration: Defined directly within the class body.

Scope: Shared across all instances of the class.

Access: Accessed via the class itself (e.g., Dog.species) or an instance
(my_object.species).

Use case:

Notes: OOP basics 8

Data shared among all instances of the same class.

Constants.

Shared configurations.

Tracking state: Managing count reference to all objects created from a class. For
example, _total_connections attribute in a Database class, or _total_users in a User class to
track how many instances were created.

Example:

main.py

class Dog:
 species = "Canis lupus familiaris"

 def __init__(self, name: str):
 self.name = name

if __name__ == "__main__":
 dog1 = Dog("Bubby")
 dog2 = Dog("Lucky")

 print(dog1.species) # STDOUT: Canis lupus familiaris
 print(dog2.species) # STDOUT: Canis lupus familiaris

Static Attributes:

Intro:
A Static attribute is essentially the same as a class attribute in Python. The term
“static” comes from other programming languages like Java, C++, where static
members are tied to the class rather than an instance. In Python, the concept of a
“static attribute” is synonymous with a class attribute.

⚠️ There is no special keyword like static to declare them.

How to reinforce the idea of a static attribute in Python:
To reinforce the idea of a static attribute in Python, it’s possible to declare a class
attribute and declare a static method using the @staticmethod decorator to access the
classes attribute.

Use cases:
Same as for class attributes in Python.

Example:

Notes: OOP basics 9

main.py

class Dog:
 species = "Canis lupus familiaris"

 @staticmethod
 def get_species():
 return Dog.species

Methods: Instance, Class, Static
This chapter outlines clear distinguishment between Instance, Class, and Static
methods within a class.

Instance methods:

Intro:
An instance method is a method that operates on an instance of the class and can
access and modify both instance and class attributes. When the instance method is
called, the like to the instance itself is automatically passes as the first argument,
conventionally named self .

How it works: When my_object.method() is called, Python automatically passes my_object
as the first self argument.

Purpose: To define the behavior of individual objects.

Access: Can access self (the instance) and self.__class__ (the class).

Use cases:
Modify object’s state.

Access object’s data.

Performing actions on a specific object.

Class methods:

Intro:
A class method operates on the class itself, not on specific instance. It’s defined using
the @classmethod decorator. When a class method is called, Python automatically passes
a link to the class itself as the first argument, conventionally named cls .

How it works: When Class.method() is called, Python automatically passes Class as the
first cls argument.

 Purpose: To define alternative constructors for the class or to work with class-
level attributes.

Notes: OOP basics 10

Access: Can access cls (the class) but not self (the instance).

Use cases:
Logic should apply to a class itself, not an individual instance.

Alternative constructors (Factory methods): a class method can be used to create
an instance in a different way rather than the standard __init__ constructor.

Tracking class-wide state.

Accessing class attributes.

Example:

main.py

class Car:
 _total_cars = 0

 def __init__(self, brand):
 self.brand = brand
 Car._tatal_cars += 1

 @classmethod
 def get_total_cars(cls):

 return cls._total_cars

Static methods:

Intro:
A static method operates only with function’s named arguments, and key-word
argument. The @staticmethod decorator changes Python’s default behavior of passing the
instance as the first parameter to the function.

Use cases:
Utility function that are logically grouped with a class but do not need to access to the
class or any instance.

For example:

Helper functions.

Namespace organization: grouping related utility functionality together.

Static validation: a static method can be used to validate input before an object is
even created.

Example:

Notes: OOP basics 11

main.py

class User:
 def __init__(self, username: str):
 self.validate_username(username)
 self.username = username

 @staticmethod
 def validate_username(username: str):
 if len(username) < 3:
 raise ValueError(
 f"username.__length__ must be > 3, got {len(username)}"
)

if __name__ == "__main__":
 user = User("ab")
 # STDERR: ValueError: username.__length__ must be > 3, got 2

How it works under the hood:
The @classmethod and @staticmethod decorators are implemented using the descriptor
protocol. They are both non-data descriptors that implement the __get__ method.

When a method decorated with @classmethod or @staticmethod is accessed from a class or
an instance, Python’s descriptor protocol is triggered. The descriptor’s method __get__
called to transform the function.

1. @classmethod — Its __get__ method takes the class object (cls) ans the function and
returns a new function (a bound method) that automatically passes cls as the first
argument.

main.py

class ClassMethod(object):
def __init__(self, f):
 self.f = f

 def __get__(self, instance, owner):
 """
 :Params:
 :``self``: Non-Data Descriptor instance.
 :``instance``: Thefucntion itself.
 :``owner``: The class the fucntion declared in.
 """

Notes: OOP basics 12

 def new_func(*args, **kwargs):
 return self.f(owner, *args, **kwargs)
 return new_func

 def __call__(self, *args, **kwargs):
 return self.f(self, instance, *args, **kwargs)

if __name__ == "__main__":
 class Test:
 def my_class_method(cls):
 print(cls)

 class_method = ClassMethod(my_class_method)

 test = Test()
 test.my_class_method() # STDOUT: <class '__main__.Test'>

2. @staticmethod — Its __get__ method simply returns that original function without any
modifications. It does not bind the function to an instance or a class, which is why it
does not receive self or cls .

main.py

"""
By default, Python passed a link to the object instance.
"""

from typing import Callable

class StaticMethod:
 def __init__(self, f: Callable):
 self.f = f

 def __get__(self, instance, owner):
 return self.f

class Test:
@staticmethod

 def my_static_method(arg1, arg2):
 print(f"arg1={arg1}; arg2={arg2}")

 my_static_method = StaticMethod(my_static_method)

Notes: OOP basics 13

if __name__ == "__main__":
 test = Test()
 test.my_static_method(
 "Hello", "Static"
) # STDOUT: arg1=Hello; arg2=Static

Quick Recall:
instance method — enforces the interpreter to pass the class object instance as the
first parameter to the function. Conventionally, named self . Named, and key-word
argument are also passed after the link to the object instance.

Class method — the @classmethod decorator enforces to pass the class itself as the first
parameter to the function. Conventionally, named cls . Named, and key-word argument
are also passed after the link to the class.

Static method — the @staticmethod decorator enforces to pass only named arguments,
and key-word arguments to the function. Does not use any keywords.

Inheritance
This chapter describes inheritance mechanism in Python.

Introduction:

Definition:
Inheritance is a way to establish an inter-class relationships between multiple classes
widely used in Object-Oriented Programming.

Relationship type — Is-a-type-of :
Inheritance enhances the is-a-type-of relationship between classes. Where a

subclass Is-a-type-of the superclass relationship.

Examples:

An engineer is a type of an employee.

A square is a type of a rectangle.

A cube is a type of a square.

And so on…

Method Resolution Order (MRO):

Into:
Method Resolution Order (MRO) is the order Python looks for methods in a hierarchy
of classes. To determine which method of all method with same name within a class

Notes: OOP basics 14

hierarchy to invoke.

Every class has the .__mro__ attribute that allows to inspect the order.

How to Define MRO:
Method Resolution Order (MRO) can be defined by the order in which a subclass
inherits from superclasses.

Also, Method Resolution Order (MRO) can be altered by the super() function
parametrization where the first parameter sets the lower bound of the search and
the second parameter tights the lower bound object and its hierarchy to the
subclass the super() function called from.

Example:

main.py

class Rectangle:
 def __init__(self, width: float, height: float):
 self.width = width
 self.height = height

 def area(self) -> float:
 return float(self.width * self.height)

 def perimeter(self) -> float:
 return float(2 * self.width + 2 * self.height)

class Square(Rectangle):
 def __init__(self, length):
 """
 The parametrized `super(Subclass, self)` function == \
 `super()`, is an equivalent of the non-parametrized \
 function.
 """

 super(Square, self).__init__(length, length)

class Triangle:
 def __init__(self, base: float, height: float):
 self.base = base
 self.height = height

 def area(self) -> float:

Notes: OOP basics 15

 return float(self.base * self.height * 0.5)

class RightPyramid(Triangle, Square):
 def __init__(self, base, slant_height):
 self.base = base
 self.slant_height = slant_height
 super().__init__(self.base) # TypeError
 s = super()
 print(type(s))

 def area(self) -> float:
 base_area = super().area()
 perimeter = super().perimeter()

 return float(0.5 * perimeter * self.slant_height + base_area)

if __name__ == "__main__":
 pyramid = RightPyramid(2, 4)
 print(RightPyramid.__mro__)
 print(pyramid.area())
 # Raises a type error as Tragne missing 1 attribute heigth

 class RightPyramid(Square, Triangle):
 def __init__(self, base, slant_height):
 self.base = base
 self.slant_height = slant_height
 super().__init__(self.base) # TypeError
 s = super()
 print(type(s))

 def area(self) -> float:
 base_area = super().area()
 perimeter = super().perimeter()

 return float(0.5 * perimeter * self.slant_height + base_area)

 pyramid = RightPyramid(2, 4)
 print(RightPyramid.__mro__)
 print(pyramid.area())

 # Now MRO point to the Square class first.

C3 Linearization Algorithm:

Notes: OOP basics 16

The C3 Linearization Algorithms is used by Python in MRO. It respects two rules:

1. Children precede their parents.

2. If a class inherits from multiple classes, they are kept in the order specified in the
tuple of the base class.

The algorithm follows these rules:

Inheritance graph determined the structure of the Method Resolution Order.

User have to visit the super class only after the method of the local classes are
visited.

Monotonicity.

The super() function:

Intro:
The super() method is a Python built-in function that is used inside a subclass's
constructor (__init__()) to access the superclass's attributes and methods.

The super() function returns a temporary instance of the superclass, which allows to
access its attributes and method within a subclass.

The super() function in Single Inheritance:
Example:

main.py

class Rectangle:
 def __init__(self, height: float, width: float):
 self.width = width
 self.height = height

 def calculate_area(self) -> float:
 return float(self.width * self.height)

 def calculate_perimeter(self) -> float:
 return float(2 * self.width + 2 * self.height)

class Square(Rectangle):
 """
 In this subclass we do not have to write \
 calculate_area and calculate_perimeter methods \
 as we can use Rectengle's methods can satisfy our goals.
 """

Notes: OOP basics 17

 def __init__(self, length: float):
 super().__init__(length, length)

class Cube(Square):
 def __init__(self, length: float):
 super().__init__(length)

 def calculate_volume(self) -> float:
 return float(self.calculate_area() * self.length)

 def calculate_surface_area(self) -> float:
 return float(self.calculate_area() * 6)

Parameters for super(SuperClass, self) :
The super() method essentially takes two parameters:

1. Is the superclass.

2. An instance of the first argument (self).

Why? and How it Works?:

This can be used to alter Method Resolution Order (MRO) for a subclass’s instance. In
default behavior (when parameters to the super() method are not provided), the MRO for
a subclass instance behaves following way — …

Note: If the first parameter of the super() function matches the superclass, and the
second parameter is self — it’s an equivalent of a parameterless call of the super()
function.

Example:

class A:
 def method(self):
 ...

class B(A):
 # here we override the method form class A
 def method(self):
 ...

class C(B):
 def method(self):

 # But still call method from class A
 super(B, self).method()

The super() function in Multiple inheritance:

Notes: OOP basics 18

Note:

Designing class that use multiple inheritance it’s important to exclude same
signatures in separate classes. As it can confuse the MRO mechanism so far as the
first signature matched to be invoked.

Example of Cooperative Inheritance:

"""
This module shows how to use the `super()` function \
 in multiple inheritance.
An example of Cooperative Inheritance.
"""

class Shape:
 def __init__(self, **kwargs):
 # Call 'object's' init.
 super().__init__(**kwargs)

class Rectangle:
 def __init__(self, width: float, length: float, **kwargs):
 self.width = width
 self.length = length
 super().__init__(**kwargs)

 def area(self) -> float:
 return float(self.width * self.length)

 def perimeter(self) -> float:
 return float(2 * self.length + 2 * self.width)

class Square(Rectangle):
 def __init__(self, length: float, **kwargs):
 super(Square, self).__init__(
 width=length, length=length, **kwargs
)

class Triangle(Shape):
 def __init__(self, base: float, height: float, **kwargs):
 self.base = base
 self.height = height
 super().__init__(**kwargs)

Notes: OOP basics 19

 def tri_area(self) -> float:
 return float(0.5 * self.base * self.height)

class RightPyramid(Square, Triangle):
 def __init__(self, base: float, slant_length: float, **kwargs):
 self.base = base
 self.slant_length = slant_length
 kwargs["height"] = slant_length
 kwargs["length"] = base
 super(RightPyramid, self).__init__(base=base, **kwargs)

 def area(self) -> float:
 base_area = super(RightPyramid, self).area()
 perimeter = super(RightPyramid, self).perimeter()

 return float(0.5 * perimeter * self.slant_length + base_area)

 def area_2(self) -> float:
 base_area = super(RightPyramid, self).area()
 triangle_area = super(RightPyramid, self).tri_area()

 return float(triangle_area * 4 + base_area)

if __name__ == "__main__":
 right_pyramid = RightPyramid(2, 4)
 print(right_pyramid.area())
 print(right_pyramid.area_2())

In this Example:

Class Named Argument kwags

Shape None {}

Rectangle width, length {”base”: 2, “height: 4”}

Square length {”base”: 2, “height: 4”}

Triangle base, height {}

RightPyramid base, slant_height {”length”: 2, “height: 4”}

Design Patterns Using Inheritance

Intro:
Python allows to to make up different design patterns base on rather single inheritance
and multiple inheritance(MI). There are three common design patterns using

Notes: OOP basics 20

inheritance.

1. Classical / Regular Inheritance (Single)
Inherits only from one parent.

2. Cooperative Inheritance
This design pattern used to manege the complexity of multiple inheritance(MI).

It requires all classes to explicitly call the super() function.

It ensures that all parent classes in the Method Resolution Order (MRO) are properly
initialized and that shared methods ere executed collaboratively without conflicts
and redundancy.

It allows a single call to super().__init__() in a child class to correctly initialize all its
parents, even those parents are siblings in the hierarchy.

It’s often achieved by:

Introducing an abstract class (like Python’s object) that has an empty __init__()
method.

Ensuring each class constructor in the class hierarchy calls the
super().__init__(**kwargs) function.

Accepting key-word arguments **kwargs in every constructor within the class
hierarchy.

Obeying naming conventions where each argument name (including named
argument and key-word argument) should be unique to avoid argument
misapplication and AttributeError and TypeError .

In the child class additional key-word argument can be set before calling the
super().__init__(**kwargs) function.

3. Mix-In Inheritance
This design pattern leverages multiple inheritance(MI) to share functional behavior.

A Mix-In class is not instantiated alone; it provides a set of reusable methods (like
loading JSON serialization capabilities).

Mix-In inheritance follows the has-a pattern. Where a subclass has some
functionality from the superclass (Mix-In in our case).

This pattern helps to achieve composition over inheritance by separating core
identity from added functionality.

Composition & Aggregation
This chapter describes alternative ways to build assassination between Python classes.

Composition

Notes: OOP basics 21

Intro:
Composition is a concept that is used to establish relationships between object.

Relationship type — has-a :
Composite has-a Component.

Often referred as strong has-a relationship.

Example:
A Car has an Engine , and the Car cannot function and exist without an engine.

main.py

class Engine:
 def __init__(self):
 self.type = "V9"

class Car:
 def __init__(self):
 self.engine = Engine()

if __name__ == "__main__":
 car = Car()

Aggregation

Intro:
Aggregation is a form of composition where dependent objects (components) are
instantiated outside of the composite class and then ready-to-use are injected.

Leverage Dependency Injection techniques to achieve aggregation.

Relationship type — has-a :
Often referred as weak has-a relationship.

Examples:
Example #1:

A Department has Professor s, but Professors can exist independently of a department. This
example leverages dependency injection(DI) through the setter method, which allows
to inject dependent objects in the runtime.

main.py

class Professor:

Notes: OOP basics 22

 def __init__(self, name: str):
 self.name = name

class Department:
 def __init__(self, name: str):
 self.name = name
 self.professor_list = []

 def assign_professor(self, professor: Professor) -> None:
 self.professor_list.append(professor)

if __name__ == "__main__":
 professor1 = Professor("Sergei")
 professor2 = Prodessor("Chabrov")

 department = Department("Computer Science")

 department.assign_professor(professor1)
 department.assing_prodessor(professor2)

Example #2:

main.py

class DatabaseConneciton:
 def __init__(self):
 ...
 def execute_sql(self, statemnt: str):
 ...

class Logger:
 def __init__(self, db: DatabaseConnection):
 self.db = db

 def log_to_db(self, log_message: str):
 self.db.execute_sql(
 f"INSERT INTO log_table (messages) VALUES log_message"
)

if __name__ == "__main__":
 db_conn = DatabaesConnection()
 logger = Logger(db=db_conn)
 logger.log_to_db("Hello DI")

Notes: OOP basics 23

Composition vs. Aggregation

Intro:
The key different between composition and aggregation lies in dependent objects
(components) lifespans.

Composition — dependent objects (components) are destroyed after the
composite object is freed from the memory.

Aggregation — dependent object (components) are still alive in the memory even
after the composite object is freed.

Difference in Implementation:
Composition — to achieve composition dependent objects (components) are
instantiated within the composite’s class constructor.

Aggregation — to achieve aggregation dependent objects (components) must be
injected into composite’s constructor using dependency injection (DI) techniques.
This allows dependent object to remain in the memory even after the composite
object is freed.

Special (magic/dunder) Methods
This chapter describes what methods stand behind Python regular syntax, including
keywords.

Description

Intro:
Special/Magic/Dunder Methods are Python’s built-in method every Python object has.

They are not meant to be called manually.

They are invoked automatically by Python interpreter in response to certain actions
operations and syntax.

They serve as underlying mechanism for operation overloading, attribute access,
object representation, and many more.

Standard Attributes of an Instance

Standard Attributes:
__class__ : A reference to the class from which the object was instantiated.

__dict__ : A dictionary that stores the instance's attributes. This is where all attributes
assigned to the object (e.g., a.x = 10) are stored.

__doc__ : The docstring of the class.

__module__ : The name of the module in which the class is defined.

Notes: OOP basics 24

__weakref__ : A special attribute that allows weak references to be made to the object.

Standard Methods of an Instance

Standard Methods:
__init__(self, *args, **kwargs) : The constructor method. It's automatically called when a

new instance is created. It initializes the instance's attributes.

__new__(cls, *args, **kwargs) : This method is called before __init__ and is responsible for
creating and returning the new object instance.

__del__(self) : The destructor method. It's called when an object's reference count
drops to zero, and it is about to be garbage collected.

__str__(self) : Returns a human-readable string representation of the object.

__repr__(self) : Returns an "official" string representation of the object. It should be a
valid Python expression that could be used to recreate the object.

__eq__(self, other) : Compares two objects for equality (==).

__hash__(self) : Returns a hash value for the object, allowing it to be used as a key in a
dictionary or an element in a set.

__dir__(self) : Returns a list of the object's attributes and methods.

__getattribute__(self, name) : Called for every attribute access, allowing you to intercept and
customize how attributes are retrieved.

__setattr__(self, name, value) : Called when an attribute is assigned a value, allowing you to
intercept and customize how attributes are set.

__delattr__(self, name) : Called when an attribute is deleted, allowing you to intercept and
customize how attributes are deleted.

Descriptor Protocol (setter, getter, deleter)
This chapter explains how to convert a method into an attribute and customize its
reading and modification behavior.

Descriptor Protocol

Intro:
A descriptor is an object that implements one of these three dunder methods __get__ ,
__set__ , __delete__ . When a descriptor is assigned as a class-level attribute, Python

automatically invokes the appropriate dunder method of the descriptor object to handle
operations on attributes.

⚠️ The Descriptor Protocol works only when a descriptor object is an attribute of
another class. If used in the __init__ it’ll behave as a regular object.

Think of Descriptors:

Notes: OOP basics 25

Instead of a simple variable, a descriptor acts as a smart variable of a proxy. When
descriptor object is assigned as a class attribute, any operation on that attribute (like
instance.access or instance.attribute = value) is not a direct interaction with a variable. Instead,

Python intercepts the operation and delegates it to the descriptor’s specific methods,
which contain the logic for managing the attribute.

Without Descriptor: my_car.color directly accesses the value “red” stored in memory.

With Descriptors: my_car.color triggers a function call to descriptor’s __get__ method,
which might check a database, validate a value, or perform a calculation before
returning the color.

Use Cases:
Descriptors are powerful tool for managing attribute access.

Data Validation and Type Checking: A descriptor can enforce rules on the type
and value of an attribute when it’s set. For example, ensure that “price” attribute is a
positive number, or “email” attribute is a valid email address. This presents invalid
data assigned to an object.

Lazy Loading: The first time attribute is accessed, the descriptor’s __get__ method
performs the expensive operation, and cached the result to be returned for
subsequent get calls.

Creating Managed Attributes:

Object-Relational Mappers (ORMs): Descriptors are the foundation of many ORMs
like SQLAlchemy. They are used to map a Python class attributes to a column in a
database table. For example, when user.username is accessed descriptor handles the
logic of querying the database to retrieve the corresponding value.

The @property Decorator: The most common used of descriptors. It is a Python
built-in decorators that facilitates creation of getters, setters, and deleters for an
attribute.

@classmethod and @staticmethod : Built-in decorators are also implemented using the
descriptor protocol. They modify how a functions is called, allowing to receive the
class itself (classmethod) or nothing but its arguments (staticmethod).

Descriptor Methods:
Or simple descriptors:

1. __get__(self, instance, owner) — Called when an attribute is accessed (e.g., obj.attr).

self — The descriptor instance itself.

instance — The object on which the attribute was accessed (e.g., obj). It’s None
when accessed via the class.

owner — The class to which the descriptor is attached (e.g., OwnerClass).

2. __set__(self, instance, value) — Called when an attributes is assigned a value (e.g., obj.attr =

value).

Notes: OOP basics 26

self — The descriptor instance.

instance — The object on which the assignment was made.

value — The value being assigned.

3. __delete__(self, instance) — Called when an attribute is deleted (e.g., del obj.attr).

self — The descriptor instance.

instance — The object on which the deletion was made.

Types of Descriptors:
1. Data Descriptors: A descriptor that implements either the __set__ or __delete__ method

(or both). Because they have logic for writing or deleting an attribute, they are
considered "data" descriptors.

2. Non-Data Descriptors: A descriptor that only implements the __get__ method. It
does not have logic for setting or deleting the attribute.

Non-Data Descriptors

Intro:
A Non-Data Descriptor is a descriptor that implements only __get__ method. Note that
descriptors van only be used as a class-attributes.

Non-Data Descriptors have the same priority as class attributes.

Can be used only to read data from some attribute.

Syntax:
Example #1:

If a class does not have __init__ implemented it cannot be instantiated, thus __get__ 's
instance is None .

main.py

#========================
Descriptior declaration
#========================
class MyDescriptor:
 def __get__(self, instance, owner) -> str:
 return instance.__dict__["some_attr"]

#=================
Usage
#=================

class MyClass:
 class_attr = MyDescriptior()

Notes: OOP basics 27

if __name__ == "__main__":
 my_class = MyClass()
 my_class.class_attr # STDERR: `KeyError`

main.py

#========================
Descriptior declaration
#========================
class MyDescriptor:
 def __get__(self, instance, owner) -> str:
 return instance.__dict__["some_attr"]

#=================
Usage
#=================

class MyClass:
 class_attr = MyDescriptior()

 def __init__(self):
 self.some_var = "World"

if __name__ == "__main__":
 my_class = MyClass()
 my_class.class_attr # STDOUT: "World"

main.py

#========================
Descriptior declaration
#========================
class MyDescriptor:
 def __get__(self, instance, owner) -> str:
 return owner.__dict__["some_attr"]

#=================
Usage
#=================

class MyClass:

Notes: OOP basics 28

 class_attr = MyDescriptior()
 some_var = "Hello"

if __name__ == "__main__":
 my_class = MyClass()
 my_class.class_attr # STDOUT: "Hello"

Example #2:

main.py

class ReadIntX:
 """
 Non-Data Descriptor.
 """

 def __set_name__(self, instance, name):
 self.name = "_x"

 def __get__(self, instance, owner):
 return getattr(instance, self.name)

class Integer:
 def __set_name__(self, owner, name: str):
 self.name = "_" + name

 def __get__(self, instance, owner):
 """
 This is the getter method which defines get behavior for the \
 Descriptor object.

 :Params:
 :``self``: Instance of the Descriptor class itself. \
 (Integer in our case).
 :``instance``: A link to the instance of a class the \
 Descriptor is instantiated in.
 (Point3D() or `point` in our case).
 :``owner``: A link to the class that the Descriptor is \
 instantiated in. (Point3D in our case).
 """

 print(f"__get__:{self.name}")

 return getattr(instance, self.name)

Notes: OOP basics 29

def __set__(self, instance, value: int):
 """

 This is the setter method which defines the set attribute \
 behavior for the Descriptor object.

 :Params:
 :``self``: Instance of the Descriptor class itself.\
 (Integer in our case).
 :``instance``: A link to the instance of a class the Descriptor \
 is stantiated in. (Point3D() or `point` in our case).
 :``value``: The value to be set for the Descriptor object.
 """

 print(f"__set__:{self.name}={value}"
 self.validate_coord(value)
 setatter(instance, self.name, value)

def __delete__(self, instance):

 """
 This is the deleter method which define the behavior for \
 the 'del' operation.

 :Params:
 :``self``: Instance of the Descriptor class itself.\
 (Integer in our case).
 :``instance``: A link to the instance of a class the Descriptor \
 is instantiated in. (Point3D() or `point` in our case).
 """

 print(f"__delete__:{self.name}")
 delattr(instance, self.name

@classmethod
def validate_coord(cls, coord: int) -> None:

if type(coord) != int:
 raise ValueError(
 f"Attr must be <class: int>, got {type(coord)}"
)

class Point3D:
 x = Integer() # Data Descriptor
 y = Integer() # Data Descriptor
 z = integer() # Data Descriptor

Notes: OOP basics 30

 rx = ReadIntX() # Non-Data Descriptor

 def __init__(self, x: int, y: int, z: int):
 self.x = x
 self.y = y
 self.z = z

if __name__ == "__main__"
 point = Point3D(1, 2, 3)
 print(point.rx) # STDOUT: 1
 del point.x
 point.__dict__() # STDOUT: {'_y': 2, '_z': 3}

Data Descriptors

Into:
A Data Descriptor is a descriptor that implement one of these methods __set__ , __delete__
in addition to the __get__ method. Thus, allowing to set and delete data.

Syntax:
Example #1:

In this example, the setter and getter functionality relies directly on the __dict__ attribute
which provides an access to object’s namespace, accordingly, it’s possible mange an
object’s namespace using this attribute. And, the __set_name__() method that is invoked
automatically every time an object is being instantiated, used to set a named attribute.

Task:

Write a class that models a point in 3-D space.

Each point has three coordinates: x, y, z.

Every coordinated must be an integer, if not raise the ValueError .

main.py

class Integer:
 def __set_name__(self, owner, name: str):
 self.name = "_" + name

 def __get__(self, instance, owner):
 """
 This is the getter method which defines get behavior for the \
 Descriptor object.

 :Params:

Notes: OOP basics 31

 :``self``: Instance of the Descriptor class itself. \
 (Integer in our case).
 :``instance``: A link to the instance of a class the \
 Descriptor is instantiated in.
 (Point3D() or `point` in our case).
 :``owner``: A link to the class that the Descriptor is \
 instantiated in. (Point3D in our case).
 """

 print(f"__get__:{self.name}")

 return instance.__dict__[self.name]

def __set__(self, instance, value: int):
 """

 This is the setter method which defines the set attribute \
 behavior for the Descriptor object.

 :Params:
 :``self``: Instance of the Descriptor class itself.\
 (Integer in our case).
 :``instance``: A link to the instance of a class the Descriptor \
 is stantiated in. (Point3D() or `point` in our case).
 :``value``: The value to be set for the Descriptor object.
 """

 print(f"__set__:{self.name}={value}"
 self.validate_coord(value)
 instance.__dict__[self.name] = value

@classmethod
def validate_coord(cls, coord: int) -> None:

if type(coord) != int:
 raise ValueError(
 f"Attr must be <class: int>, got {type(coord)}"
)

class Point3D:
 x = Integer()
 y = Integer()
 z = integer()

 def __init__(self, x: int, y: int, z: int):
 self.x = x

Notes: OOP basics 32

 self.y = y
 self.z = z

if __name__ == "__main__"
 point = Point3D(1, 2, 3)
 point.__dict__() # STDOUT: {'_x': 1, '_y': 2, '_z': 3}

 # ============================
 point = Point3D(1.1, 2.2, 3.3)
 # The `ValueError` due to the validation failure.
 point.x = 12.
 # Also, `ValueError` due to the validation failure.
 # ============================

Example #2:

In this example, the setter and getter methods rely on the Python’s built-in setattr() ,
getattr() , and delattr() method. These methods provide a robust interface to manage an

object’s namespace (i.e. obj.__dict__).

main.py

class Integer:
 def __set_name__(self, owner, name: str):
 self.name = "_" + name

 def __get__(self, instance, owner):
 """
 This is the getter method which defines get behavior for the \
 Descriptor object.

 :Params:
 :``self``: Instance of the Descriptor class itself. \
 (Integer in our case).
 :``instance``: A link to the instance of a class the \
 Descriptor is instantiated in.
 (Point3D() or `point` in our case).
 :``owner``: A link to the class that the Descriptor is \
 instantiated in. (Point3D in our case).
 """

 print(f"__get__:{self.name}")

 return getattr(instance, self.name)

Notes: OOP basics 33

def __set__(self, instance, value: int):
 """

 This is the setter method which defines the set attribute \
 behavior for the Descriptor object.

 :Params:
 :``self``: Instance of the Descriptor class itself.\
 (Integer in our case).
 :``instance``: A link to the instance of a class the Descriptor \
 is stantiated in. (Point3D() or `point` in our case).
 :``value``: The value to be set for the Descriptor object.
 """

 print(f"__set__:{self.name}={value}"
 self.validate_coord(value)
 setatter(instance, self.name, value)

def __delete__(self, instance):

 """
 This is the deleter method which define the behavior for \
 the 'del' operation.

 :Params:
 :``self``: Instance of the Descriptor class itself.\
 (Integer in our case).
 :``instance``: A link to the instance of a class the Descriptor \
 is instantiated in. (Point3D() or `point` in our case).
 """

 print(f"__delete__:{self.name}")
 delattr(instance, self.name

@classmethod
def validate_coord(cls, coord: int) -> None:

if type(coord) != int:
 raise ValueError(
 f"Attr must be <class: int>, got {type(coord)}"
)

class Point3D:
 x = Integer()
 y = Integer()
 z = integer()

Notes: OOP basics 34

 def __init__(self, x: int, y: int, z: int):
 self.x = x
 self.y = y
 self.z = z

if __name__ == "__main__"
 point = Point3D(1, 2, 3)
 del point.x
 point.__dict__() # STDOUT: {'_y': 2, '_z': 3}

The Precedence Rule and MRO

Intro:
The Precedence Rule is fundamental to how Python works. When you access an
attribute (obj.attr1), Python follows this order.

1. Lookup for attr1 in the class’s __dict__ and see if it’s a data descriptor. If so, use it’s
__get__ method.

2. Lookup for attr1 in object’s (instance’s) __dict__ . If exits, use that value.

3. Look for attr1 in the class’s __dict__ and see if it’s non-data descriptor. If so, use its
__get__ method.

4. If none of these above are found, for for attr in the class’s base classes (following
the MRO).

The Precedence Rule.

(High-priority)
^

1 | |-- Class.__dict__ (data descriptor)
| |

2 | |-- Instance.__dict__ (instance attributes)
| |

3 | |-- Class.__dict__ (non-data descriptor)
| |

4 | |-- Class.__mro__ (standart class attrs)
|

(Low-Priority)

Class.__dict__ (data-descriptor) → instance.__dict__ → Class.__dict__ (non-data descriptor) →
Class.__mro__ (standard MRO).

Property Decorator (@property):

Intro:

Notes: OOP basics 35

The @property decorator is Python’s built-in decorator that servers to facilitate usage of
the descriptor protocol. This decorator becomes in handy when a class does not have
much attributes.

Semantics:
The @property decorator takes a method and turns it into a special kind of attribute.
Under the hood, the decorator creates a data descriptor instance. This data descriptor
has automatically implemented __get__ , __set__ , and __delete__ methods.

Examples:

main.py

"""
This module show how to use the `@property` decorator.

The `@property` decorator is a high-level API Python provides for the \
 Descriptor Protocol.

It allows to:
 - Turn methods into a special kind of an attribute.
 - Create Setter and Getter without utilizing special methods.
"""

from decimal import Decimal

class Employee:
 def __init__(self, first_name: str, last_name: str, salary: Decimal):
 self.first_name = first_name
 self.last_name = last_name
 self.salary = salary

 @property
 def full_name(self) -> str:
 return "{} {}".format(
 self.first_name.capitalize(),
 self.last_name.capitalize()
)

 @full_name.setter
 def full_name(self, full_name: str):
 first_name, last_name = full_name.split()

Notes: OOP basics 36

 self.first_name = first_name.capitalize()
 self.last_name = last_name.capitalize()

 @full_name.deleter
 def full_name(self):
 """
 This deleter forbids to delete Employee's name.
 """

 raise ValueError("Required Fields Cannot be Deleted")

 @property
 def email(self):
 if not "_email" in self.__dict__:
 self._email = "{}-{}@mail.com".format(
 self.first_name,
 self.last_name
)
 return self._email

 return self._email

 @email.setter
 def email(self, *args, **kwargs):
 if args or kwargs:
 self.email = None
 return

 self.email = "{}-{}@mail.com".format(
 self.first_name,
 self.last_name
)

 @email.deleter
 def email(self):
 self._email = None

if __name__ == "__main__":
 employee = Employee("sergei", "chabrov", 1_000_000)
 employee.full_name = "sergei2 chabrov"
 print(employee.full_name) # STDOUT: Sergei2 Chabrov
 print(employee.email) # STDOUT: Sergei2-Chabrov@mail.com
 del employee.email
 print(employee.email) # STDOUT: None

Notes: OOP basics 37

 print(employee.__dict__) # STDOUT: {
 # 'first_name': 'Sergei2',
 # 'last_name': 'Chabrov',
 # 'salary': 1000000,
 # '_email': None
 # }

The same but using the Descriptor Protocol:

main.py

from decimal import Decimal

class FullName:
 def __set_name__(self, instance, name):
 self.name = "_" + name

 def __get__(self, instance, owner):
 if instance:
 return getattr(instance, self.name)

 return getattr(owner, self.name)

 def __set__(self, instance, value: str):
 first_name, last_name = value.split()
 first_name = first_name.capitalize()
 last_name = last_name.capitalize()

 setattr(instance, "_first_name", first_name)
 setattr(instance, "_last_name", last_name)
 setattr(instance, "_full_name", "{} {}".format(
 first_name, last_name
))

 def __delete__(self, instance):
 raise ValueError("Required Fields Cannot be Deleted")

class Email:
 def __set_name__(self, instance, name):
 self.name = "_" + name

 def __get__(self, instance, owner):
 if instance:

Notes: OOP basics 38

 return instance.__dict__[self.name]

 return owner.__dict__[self.name]

 def __set__(self, instance, value):
 email = "{}-{}@mail.com".format(
 instance.__dict__["_first_name"],
 instance.__dict__["_last_name"]
)
 instance.__dict__[self.name] = email

 def __delete__(self, instance):
 if instance.__dict__[self.name]:
 instance.__dict__[self.name] = None

class Employee:
 full_name = FullName()
 email = Email()

 def __init__(self, first_name: str, last_name: str, salary: Decimal):
 self.first_name = first_name
 self.last_name = last_name
 self.salary = salary
 self.full_name = "{} {}".format(first_name, last_name)
 self.email = "123" # The value won't be used.

if __name__ == "__main__":
 employee = Employee("sergei", "Chabrov", 1_000_000)
 print(employee.first_name) # STDOUT: sergei
 print(employee.full_name) # STDOUT: Sergei Chabrov
 print(employee.email) # STDOUT: Sergei-Chabrov@mail.com
 del employee.email
 print(employee.email) # STDOUT: None
 print(employee.__dict__) # STDOUT: {
 # 'first_name': 'sergei',
 # 'last_name': 'Chabrov',
 # 'salary': 1000000,
 # '_first_name': 'Sergei',
 # '_last_name': 'Chabrov',
 # '_full_name': 'Sergei Chabrov',
 # '_email': None
 # }

Notes: OOP basics 39

More Examples:
Inheritance

Definition and examples
Inheritance allows a class to inherit attributes and methods form another class.

It is useful because we can:

1. Make subclasses and get all the functionality of the parent class.

2. Overwrite and add completely functionality without effecting the parent class and its
instances.

Example:

Let’s say that we want to create a new specific class of Employee. E.g.: Developers and
Managers.

class Employee:
 pay_raise = 1.04

 def __init__(self, first, last, pay) -> None:
 self.first = first
 self.last = last
 self.pay = pay
 self.email = "{}.{}@mai.com".format(self.first, self.last)

 def raise_pay(self) -> None:
 self.pay = int(self.pay * self.pay_raise)

class Developer(Employee):
 pass

Method Resolution Order (MRO)
Method resolution order is the order in which the interpreter looks for attributes and
methods before accessing them. Methods and attributes with the same names can be
prioritized by the resolution order.

print(help(Developer))

Using methods resolution order, we can overwrite class attribute and methods for each
subclass. And they will be valid only for this subclass.

Example:

Notes: OOP basics 40

Let’s say we want to change the pay_raise attribute only for the Developers up to 100 %.

class Developer(Employee):
 pay_raise = 2 # Attribute overwriting for the subclass.
 pass

dev_1 = Developer('Corn', 'Boob', 30000)
print(dev_1.pay) # Stdout: 30000
dev_1.raise_pay()
print(dev_1.pay) # Stdout: 60000

dev_1 = Employee('Corn', 'Boob', 30000)
print(dev_1.pay) # Stdout: 30000
dev_1.raise_pay()
print(dev_1.pay) # Stdout: 31200

Extending child instance’s attributes
We can enrich the child class instances functionality by adding new instance attribute to
the child’s __init__ method. We can access the parent instances attributes and methods
without copying the code form the parent class.

Example:

class Developer(Employee):
 pay_raise = 2

 def __init__(self, first, last, pay, prog_lang) -> None:
 super().__init__(first, last, pay) # Same as: Employee.__init__(self, first, last, pay)
 # Line above passes arguments into the parent class's __init__ method,
 # meanwhile, the child's __init__ just extend Developer's instance attributes.
 self.prog_lang = prog_lang

dev_1 = Developer('Corn', 'Boob', 30000, 'Python')
print(dev_1.first) # Stdout: 'Corn' | the 'first' attribute is handled by the Employee class.
print(dev_1.prog_lang) # Stdout: 'Python' | the 'prog_lang' attribute is handled by the D
eveloper class.

class Manager(Employee):
 pay_raise = 1.12

 def __init__(self, first, last, pay, employees=None) -> None:
 super().__init__(first, last, pay)
 if not employees:
 self.employees = []

Notes: OOP basics 41

 else:
 self.employees = employees

 def add_emp(self, emp):
 if emp not in self.employees:
 self.employees.append(emp)

 def rem_emp(self, emp):
 if emp not in self.employees:
 print("No such employee")
 else:
 self.employees.remove(emp)

 def print_employees_names(self):
 for employee in self.employees:
 print(f"Employee: {employee.first} {employee.last} {employee.__class__}")

man_1 = Manager('Raya', 'Abbe', 32000, [dev_1])
print(man_1.print_employees_names())
man_1.rem_emp(dev_1)
print(man_1.employees)

💡 To get the class name fro the class instance. class_instance.__class__.__name__

Isinstance() and issubclass() methods
Instance method will tell us if an object is an instance of the class

Example:

isinstance(dev_1, Employee) #Stdout: True
isinstance(dev_1, Developer) #Stdout: True
isinstance(man_1, Developer) #Stdout: False

Is subclass method will tell us if a subclass of another subclass

Example:

issubclass(Developer, Employee) # Stdout: True
issubclass(Manager, Developer) # Stdout: False

Special (magic/dunder) methods

Definition

Notes: OOP basics 42

A Special (Magic/Dunder) methods are meant to set or change the default behavior of a
class.

For example: when we use the ‘+’ symbol on integers, they will be added arithmetically,
but if we use the ‘+’ symbol on strings they will be concatenated by default. As follows, the
default behavior is tighten to an object special methods.

print(str.__add__('a', 'b')) # Stdout: 'ab'
print(int.__add__(1, 2)) # Stdout: 3

Changing standard behavior

class Employee:
 def __init__(self, first, last, pay) -> None:
 self.first = first
 self.last = last
 self.pay = pay
 self.email = "{}.{}@mail.com".format(self.first, self.last)

emp_1 = Employee('John', 'Harries', 20000)
print(emp_1) # Stdout: <__main__.Employee object at 0x7a1bc8657f70>
print(repr(emp_1)) # Stdout: <__main__.Employee object at 0x7258d855bf70>

Change the behavior of the standard print method
class Employee:
 def __init__(self, first, last, pay) -> None:
 self.first = first
 self.last = last
 self.pay = pay
 self.email = "{}.{}@mail.com".format(self.first, self.last)

 def __str__(self) -> str:
 return "{} {}, {}".format(self.first, self.last, self.__class__.__name__)

 def __repr__(self) -> str:
 return "{}('{}', '{}', '{}')".format(self.__class__.__name__, self.first, self.last, self.pa
y)

 def __add__(self, other: Employee) -> int:
 return int(self.pay + other.pay)

emp_1 = Employee('John', 'Harries', 20000)
emp_2 = Employee('David', 'Baron', 40000)

Notes: OOP basics 43

print(emp_1) # Stdout: "John, Harries, Employee"
print(repr(emp_1)) # Stdout: Employee(John, Harries, 20000)
print(emp_1 + emp_2) # 60000

__repr__ is used to represent tech information. __str__ is used to represent user friendly
information. It is a good practice to return the command the instance was created with
for the __repr__ method.

One more example:

class A:
 def __init__(self, a) -> None:
 self.a = a

 # def __eq__(self, value: object) -> bool:
 # Standard behavior is to compare objects bit by bit.

Not operator == will compare length of the instance with the length of a value.
Instead comparing bit by bit values

a = A('hello')
print(a == 'olleh') # False

class A:
 def __init__(self, a) -> None:
 self.a = a

 def __eq__(self, value: object) -> bool:
 # New behavior is to compare lengths of two objects
 return len(self.a) == len(value)

a = A('hello')
print(a == 'olleh') # True

Property decorators, setters, getters, deleters
Property decorators allow to access: setter, getter and deleter functionality. Property
decorator allows to define methods that can be accesses as attributes.

The problem it solves:

class Employee:
 def __init__(self, first, last, pay) -> None:
 self.first = first
 self.last = last
 self.pay = pay

Notes: OOP basics 44

 self.email = "{}.{}@.mail.com".format(first, last)

 def full_name(self) -> str:
 return "{} {}".format(self.first, self.last)

emp_1 = Employee('John', 'Clark', 40000)
print(emp_1.email) # Stdout: John.Clark@.mail.com
emp_1.last = 'Kirov'
print(emp_1.email) # Stdout: John.Clark@.mail.com

As you can see, changing the last name did not lead to the email address change. But let’s
suppose, that we need to change the email address every time the first or last names are
changed. We can add a new instance method that allows us to receive the mail, but it will
lead us to the problem where everyone who uses the Employee class must start using our
new method instead if revering referring to the instance’s attribute ‘email’.

class Employee:
 def __init__(self, first, last, pay) -> None:
 self.first = first
 self.last = last
 self.pay = pay

 def full_name(self) -> str:
 return "{} {}".format(self.first, self.last)

 def email(self) -> str:
 return "{}.{}@.mail.com".format(self.first, self.last)

emp_1 = Employee('John', 'Clark', 40000)
print(emp_1.email()) # Stdout: John.Clark@.mail.com
emp_1.last = 'Kirov'
print(emp_1.email()) # Stdout: John.Kirov@.mail.com

To tackle this problem the property decorated comes in handy.

Property decorator (as getter)
Note: we co not want to refactor every piece of code that refers to the ‘email’ attribute. To
achieve the desired behavior, we can use the @property decorator, which will allow us to
refer to the method as we refer to the attribute.

class Employee:
 def __init__(self, first, last, pay) -> None:
 self.first = first
 self.last = last
 self.pay = pay

Notes: OOP basics 45

 @property
 def full_name(self) -> str:
 return "{} {}".format(self.first, self.last)

 @property
 def email(self) -> str:
 return "{}.{}@.mail.com".format(self.first, self.last)

emp_1 = Employee('John', 'Clark', 40000)
print(emp_1.email) # Stdout: John.Clark@.mail.com
emp_1.last = 'Kirov'
print(emp_1.email) # Stdout: John.Kirov@.mail.com

Note: We do not have to use parentheses when calling the 'email' method.

Setter
Let’s say that, we want to set a new fist and last attributes for our Employee 1 instance. We
can do so manually, or use the setter mechanism.

print(emp_1.full_name) # John Kirov
try:
 emp_1.full_name = 'Alex Ross' # Will raise the AttributeError: can't set attribute 'full_
name'
except Exception as e:
 print(e)

Using setter mechanism. In order to make the setter mechanism operational we need to
use the property decorator.

class Employee:
 def __init__(self, first, last, pay) -> None:
 self.first = first
 self.last = last
 self.pay = pay

 @property
 def full_name(self) -> str:
 return "{} {}".format(self.first, self.last)

 # The setter mechanism
 @full_name.setter
 def full_name(self, name: str) -> None:
 first, last = name.split()
 self.first = first

Notes: OOP basics 46

 self.last = last

emp_1 = Employee('John', 'Clark', 40000)
print(emp_1.full_name) # John Kirov
emp_1.full_name = 'Alex Ross' # Will NOT raise any error now.
print(emp_1.full_name)

Deleter
We also can implement the deleter the same way as we did with the setter.

class Employee:
 def __init__(self, first, last, pay) -> None:
 self.first = first
 self.last = last
 self.pay = pay

 @property
 def full_name(self) -> str:
 return "{} {}".format(self.first, self.last)

 # The setter mechanism
 @full_name.deleter
 def full_name(self) -> None:
 self.first = None
 self.last = None

emp_1 = Employee('John', 'Clark', 40000)
print(emp_1.full_name) # Stdout: John Clark
del emp_1.full_name # Deletes the instance of the class
print(emp_1.full_name) # Stdout: None None

Type System in OOP:
Types and classes

The difference between a class and a type in Python

Intro:
The conceptual difference between a type and a class in Python is that a class is a
runtime concept, and a type is a type-checker concept.

Types of Typing in Python

Notes: OOP basics 47

Intro:
There are three basic ways to define a type:

1. Nominal subtyping:
Nominal subtyping is a type of subtyping where classes hierarchy is used. Each class
is a type.

2. Duck-typing (structural subtyping):
The type is defined by specifying which methods work with variables of this type.

Example:

If an object has the __len__ method then it has Sized type.

3. Type Composition:
In the case of the type composition earlier defined types are used to define more
complex types.

Example:

We can define following type: a list that contains only instances of integers or strings.

mian.py

from typing import List

list_of_ints = List[int]

Type Checkers
General information

Intro:
Type checker is a special program that analyzes the source code statically (without
execution).

It supposes that the source code of a program is divided into separate layers:

1. The runtime executable source code itself — The source code is interpreted by the
Python’s interpreter.

2. The type annotations for the source code — The type annotation for the source
code are fully ignored by the Python’s interpreter at the runtime. But, these
annotation are used by another programs such as static code analyzers (e.g.,
MyPy), or IEDs.

Variance in types
Variance Rules in Python

Notes: OOP basics 48

Intro:
Python’s type systems only applies variance rules to types defined in typing (ans newer
collections.abc re-exports), not to runtime classes themselves.

Invariant Types:
list[T]

dict[K, V]

set[T]

frozenset[T]

bytearray

deque[T]

DefaultDict[K, V]

OrderedDict[K, V]

Counter[T]

ChainMap[K, V]

MutableSequence[T]

MutableMapping[K, V]

MutableSet[T]

Reason: These allow mutation (insertion of any sub-type/super-type would break type
safety). Therefor they are invariant.

Covariant Types:
Sequence[T_co]

Mapping[K, V_co]

MappingView[T_co]

ItemsView[K, V_co]

KeysView[K_co]

ValuesView[V_co]

FrozenSet[T_co]

Collection[T_co]

Container[T_co]

Iterable[T_co]

Iterator[T_co]

Generator[Y_co, S, R_co]

Notes: OOP basics 49

AsyncIterable[T_co]

AsyncIterator[T_co]

AsyncGenerator[Y_co, S, R_co]

Reversible[T_co]

Reason: These exposes elements but do not consume them (read-only in type terms),
so they are covariant.

Contravariant Types:
Callable[Params, ReturnType]

Parameter types are contravariant.

Return type is covariant.

Reason: A function that can accept more general argument can safely substitute one
that accepts more specific ones.

Special Notes:
tuple[T1, T2, ...] → fixed-length tuples are invariant.

tuple[T_co, ...] (variable-length homogeneous tuple) is covariant.

Type[T_co] is covariant in its parameter.

Awaitable[T_co] , Coroutine[Any, Any, T_co] → covariant in result.

ContextManager[T_co] , AsyncContextManager[T_co] → covariant.

Pattern[str] , Match[str] (or bytes) → covariant.

Covariance

Intro:
Def:

Think of covariance:

Examples:

Use case:
Contravariance
Invariance

Variance Rules in Python

The List of Used Sources:

Notes: OOP basics 50

1. https://realpython.com/python-super/#:~:text=An Overview of Python's super()
Function,-If you have&text=While the official documentation is,to call that superclass's
methods.

2. https://docs.python.org/3/howto/descriptor.html

3. https://www.youtube.com/watch?v=ACqsYPbgePk&ab_channel=selfedu

4. https://github.com/chabrovs/py/tree/main/RoadMap/OOP/descriptors

5. https://github.com/chabrovs/py/tree/main/RoadMap/OOP/descriptor_protocol

6. https://peps.python.org/pep-0484/

7. https://medium.com/@zohaib.official.co/demystifying-type-and-object-in-python-the-
backbone-of-classes-and-objects-799bfb80d824

8. https://blog.daftcode.pl/covariance-contravariance-and-invariance-the-ultimate-python-
guide-8fabc0c24278

Notes: OOP basics 51

https://realpython.com/python-super/#:~:text=An%20Overview%20of%20Python's%20super()%20Function,-If%20you%20have&text=While%20the%20official%20documentation%20is,to%20call%20that%20superclass's%20methods
https://realpython.com/python-super/#:~:text=An%20Overview%20of%20Python's%20super()%20Function,-If%20you%20have&text=While%20the%20official%20documentation%20is,to%20call%20that%20superclass's%20methods
https://realpython.com/python-super/#:~:text=An%20Overview%20of%20Python's%20super()%20Function,-If%20you%20have&text=While%20the%20official%20documentation%20is,to%20call%20that%20superclass's%20methods
https://realpython.com/python-super/#:~:text=An%20Overview%20of%20Python's%20super()%20Function,-If%20you%20have&text=While%20the%20official%20documentation%20is,to%20call%20that%20superclass's%20methods
https://realpython.com/python-super/#:~:text=An%20Overview%20of%20Python's%20super()%20Function,-If%20you%20have&text=While%20the%20official%20documentation%20is,to%20call%20that%20superclass's%20methods
https://docs.python.org/3/howto/descriptor.html
https://www.youtube.com/watch?v=ACqsYPbgePk&ab_channel=selfedu
https://github.com/chabrovs/py/tree/main/RoadMap/OOP/descriptors
https://github.com/chabrovs/py/tree/main/RoadMap/OOP/descriptor_protocol
https://peps.python.org/pep-0484/
https://medium.com/@zohaib.official.co/demystifying-type-and-object-in-python-the-backbone-of-classes-and-objects-799bfb80d824
https://medium.com/@zohaib.official.co/demystifying-type-and-object-in-python-the-backbone-of-classes-and-objects-799bfb80d824
https://blog.daftcode.pl/covariance-contravariance-and-invariance-the-ultimate-python-guide-8fabc0c24278
https://blog.daftcode.pl/covariance-contravariance-and-invariance-the-ultimate-python-guide-8fabc0c24278

